skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhiwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. Abstract We introduce an efficient stochastic interacting particle-field (SIPF) algorithm with no history dependence for computing aggregation patterns and near singular solutions of parabolic-parabolic Keller-Segel (KS) chemotaxis system in three-dimensional (3D) space. In our algorithm, the KS solutions are approximated as empirical measures of particles coupled with a smoother field (concentration of chemo-attractant) variable computed by a spectral method. Instead of using heat kernels that cause history dependence and high memory cost, we leverage the implicit Euler discretization to derive a one-step recursion in time for stochastic particle positions and the field variable based on the explicit Green’s function of an elliptic operator of the form Laplacian minus a positive constant. In numerical experiments, we observe that the resulting SIPF algorithm is convergent and self-adaptive to the high-gradient part of solutions. Despite the lack of analytical knowledge (such as a self-similar ansatz) of a blowup, the SIPF algorithm provides a low-cost approach to studying the emergence of finite-time blowup in 3D space using only dozens of Fourier modes and by varying the amount of initial mass and tracking the evolution of the field variable. Notably, the algorithm can handle multi-modal initial data and the subsequent complex evolution involving the merging of particle clusters and the formation of a finite time singularity with ease. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller–Segel (KS) chemotaxis system in two and three space dimensions, then further develop the DeepParticle method to learn and generate solutions under variations of physical parameters. The KS solutions are approximated as empirical measures of particles that self-adapt to the high gradient part of solutions. We utilize the expressiveness of deep neural networks (DNNs) to represent the transform of samples from a given initial (source) distribution to a target distribution at a finite time 𝑇 prior to blowup without assuming the invertibility of the transforms. In the training stage, we update the network weights by minimizing a discrete 2-Wasserstein distance between the input and target empirical measures. To reduce the computational cost, we develop an iterative divide-and-conquer algorithm to find the optimal transition matrix in the Wasserstein distance. We present numerical results of the DeepParticle framework for successful learning and generation of KS dynamics in the presence of laminar and chaotic flows. The physical parameter in this work is either the evolution time or the flow amplitude in the advection-dominated regime. 
    more » « less
  4. In this paper, we study the convergence analysis for a robust stochastic structure-preserving Lagrangian numerical scheme in computing effective diffusivity of time-dependent chaotic flows, which are modeled by stochastic differential equations (SDEs). Our numerical scheme is based on a splitting method to solve the corresponding SDEs in which the deterministic subproblem is discretized using a structure-preserving scheme while the random subproblem is discretized using the Euler-Maruyama scheme. We obtain a sharp and uniform-in-time convergence analysis for the proposed numerical scheme that allows us to accurately compute long-time solutions of the SDEs. As such, we can compute the effective diffusivity for time-dependent chaotic flows. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing effective diffusivity for the time-dependent Arnold-Beltrami-Childress (ABC) flow and Kolmogorov flow in three-dimensional space. 
    more » « less
  5. null (Ed.)
    The G-equation is a well-known model for studying front propagation in turbulent combustion. In this paper, we develop an efficient model reduction method for computing regular solutions of viscous G-equations in incompressible steady and time-periodic cellular flows. Our method is based on the Galerkin proper orthogonal decomposition (POD) method. To facilitate the algorithm design and convergence analysis, we decompose the solution of the viscous G-equation into a mean-free part and a mean part, where their evolution equations can be derived accordingly. We construct the POD basis from the solution snapshots of the mean-free part. With the POD basis, we can efficiently solve the evolution equation for the mean-free part of the solution to the viscous G-equation. After we get the mean-free part of the solution, the mean of the solution can be recovered. We also provide rigorous convergence analysis for our method. Numerical results for viscous G-equations and curvature G-equations are presented to demonstrate the accuracy and efficiency of the proposed method. In addition, we study the turbulent flame speeds of the viscous G-equations in incompressible cellular flows. 
    more » « less
  6. A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis). 
    more » « less